Covalent binding of 3-pyridinealdehyde nicotinamide adenine dinucleotide and substrate to glyceraldehyde 3-phosphate dehydrogenase.

نویسندگان

  • E J Hill
  • T H Chou
  • M C Shih
  • J H Park
چکیده

Glyceraldehyde 3-phosphate dehydrogenase (D-glyceraldehyde-3-phoshate:nicotinamide adenine dinucleotide oxidoreductase (phosphorylating), EC 1.2.1.12) forms a complex with 3-pyridinealdehyde-NAD which survives precipitation with 7% perchloric acid. The molar ratio bound 3-pyridinealdehyde-NAD to the enzyme is 2.5 to 2.9. Lactate, malate, and alcohol dehydrogenases do not form acid-precipitable complexes with 3-pyridinealdehyde-NAD. 3-Pyridinealdehyde-deamino-NAD or glyceraldehyde 3-phosphate also forms an acid-stable complex with glyceraldehyde 3-phosphate dehydrogenase; however, NAD, 3-acetylpyridine-NAD, or thionicotinamide-NAD does not produce an acid-stable complex. Incubation of the glyceraldehyde 3-phosphate dehydrogenase with glyceraldehyde 3-phosphate, acetyl phosphate, iodoacetic acid, or iodosobenzoate inhibits the formation of the acid-stable complex with 3-pyridinealdehyde-NAD. Glyceraldehyde 3-phosphate or 3-pyridinealdehyde-NAD also prevents carboxymethylation of the active site cysteine-149 by[14-C]iodoacetic acid. These studies indicate that the aldehyde group of 3-pyridinealdehyde-NAD forms a thiohemiacetal linkage with cysteine-149 which is the substrate binding site for the dehydrogenase reaction. These findings may account for the fact that 3-pyridinealdehyde-NAD strongly inhibits the dehydrogenase and esterase activities of 3-pyridinealdehyde-NAD forms a thiohemiacetal linkage with cysteine-149 which is the substrate binding site for the dehydrogenase reaction. These findings may account for the fact that 3-pyridinealdehyde-NAD strongly inhibits the dehydrogenase and esterase activities of glyceraldehyde 3-phosphate dehydrogenase which require reduced cysteine-149. However, the analogue does not inhibit the acetyl phosphates activity of the enzyme for which the active site sulfhydryl residues must be oxidized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The binding of nicotinamide-adenine dimucleotide to glyceraldehyde 3-phosphate dehydrogenase from Bacillus stearothermophilus.

The binding of NAD+ to glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) from Bacillus stearothermophilus has been studied by measurement of protein fluorescence quenching. Slight negative co-operativity was observed in the binding of the third and fourth coenzyme molecules to the tetrameric enzyme. The first two coenzyme molecules were tightly bound. In this respect the enzyme resembles t...

متن کامل

Mechanism of negative cooperativity in glyceraldehyde-3-phosphate dehydrogenase deduced from ligand competition experiments.

It is shown that the modulation in the negative cooperativity of ligand binding by another, competing ligand that binds noncooperatively is accounted for exclusively by the ligand-induced sequential model. It is therefore suggested that whenever such a phenomenon is observed it argues strongly in favor of the sequential model. The advantages and limitations of this approach are evaluated. The b...

متن کامل

Nicotinamide adenine dinucleotide-specific glyceraldehyde 3-phosphate dehydrogenase from Pisum sativum. Effect of nicotinamide adenine dinucleotide and related compounds on the enzyme-catalyzed arsenolysis of 1,3-diphosphoglyceric acid.

NADf-specific glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) from pea seeds is shown to catalyze the arsenolysis of 1 ,3-diphosphoglyceric acid. The reaction shows an absolute requirement for NAD+ or analogs which will replace NAD+ in the enzyme-catalyzed oxidative phosphorylation of glyceraldehyde 3-phosphate. NADH, glyceraldehyde j-phosphate, or NADf analogs which are inhibitory or in...

متن کامل

REASSOCIATION AND REACTIVATION OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE FROM STREPTOMYCES AUREOFACIENS AFTER DENATURATION BY 6 M UREA

Glucose 6-phosphate dehydrogenase (G6PD) from Streptomyces aureofaciens was purified and denatured in 6 M urea. Denaturation led to complete dissociation of the enzyme into its inactive monomers, 98% loss of the enzyme activity, about 30% decrease in the protein fluorescence and a 10 nm red shift in the emission maximum. Dilution of urea-denatured enzyme resulted in regaining of the enzyme acti...

متن کامل

Stimulation by nitric oxide of an NAD linkage to glyceraldehyde-3-phosphate dehydrogenase.

Nitric oxide-stimulated modification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by [adenylate-32P]NAD has been interpreted in recent reports as ADP-ribosylation. Incubations of GAPDH with the NO-releasing agent sodium nitroprusside (SNP) and NAD resulted, however, in essentially equal incorporation of radiolabel from the adenine, phosphate, and nicotinamide moieties to the extent of ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 250 5  شماره 

صفحات  -

تاریخ انتشار 1975